Lesson Plan (Physics-Nuclear Physics)

Week **Topic Covered** Introduction, Rutherford α scattering experiment and 1st Week determination of nuclear size, constituents of nuclei, **Nuclear Properties** 2nd Week Mass defect and binding energy of a nucleus, importance of binding energy curve, Nuclear stability 3rd Week Determination of nuclear mass: Bain Bridge mass spectrograph, Bain Bridge and Jordan Double focusing mass Spectrograph 4th Week X- Ray Spectra: Origin of continuous spectra, Origin of characteristics X- Ray Spectra, Moseley's Law and Determination of nuclear charge 5th Week Interaction of charge particles with matter: Introduction, Interaction of light charged particles i.e $\beta - particles$, interaction of positron with matter 6th Week Interaction of heavy charged particles; Bohr's Stopping power formula, range and Straggling of charged particles, Interaction of γ rays with matter 7th Week Photoelectric effect, Compton Scattering, Pair Production, Absorption of γ rays and its application 8th Week Range of α particles, Geiger- Nuttal Law, Alpha α Disintegration and its theory, Energetics of α Decay 9th class β Decay and its types, Energetics of β Decay, Difference b/n positron emission and electron Capture 10th Week β particles Spectrometer, Neutrino theory of continuous Beta Spectrum 11th Week Nuclear reaction and its types, Conservation laws in Nuclear Reaction, Q value of Nuclear reaction 12th Week **Exothermic and Endothermic Nuclear reaction and** their Q- values, Nuclear fission, Nuclear chain reaction 13th week Nuclear Reactor: Principle, Construction, working and uses, General Aspects of nuclear reactor Design 14th Week Nuclear Fusion: A thermonuclear process, Controlled thermonuclear reaction and possibility of fusion reactor 15th Week Van De Graaff accelerator, Tandem Accelerator, Linear accelerator: Principle, construction and working 16th Week Cyclotron, Betatron : Principle, construction and working 17th Week Gas filled detector, ionization chamber, proportion counter

G.M counter, Scintillation counter

Semiconductor Detector: Diffused junction detector,

18th Week

19th Week

BSc. 6th sem. (Even Sem.)

	Surface barrier detector, Lithium Drifted Detector
20 th Week	Last Year Question Paper Solution
21 th Week	Revision of Unit -1
22 th Week	Revision of Unit-2
23 th Week	Revision of Unit-3

Lesson Plan

(Physics-Quantum Mechanics)

B.Sc. 5th sem. (Odd Sem.)

Week	Topic Covered
1 st Week	Failure of classical E.M. Theory, Planck's Quantum Theory of
	Radiation, Characteristics of Photons
2 nd Week	Photoelectric Effect and failure of classical E.M. Theory to
	explain to Explain Photo Electric Effect, Einstein's Equation
	of Photoelectric Effect
3 rd Week	Compton Effect & theory of Compton Scattering,
	Experimental Study of Compton Effect, Relation B/n angle of
	scattering Photon and Recoiling electron
4 th Week	Energy of recoiling electron, K.E of recoiling electron in term
	of angle of scattering, Energy of scattered photon, Compton
	effect with visible and UV light, Limitation of old Quantum
	Theory
5 th Week	De-Broglie Hypothesis and matter wave, alternative method,
	de –Broglie wavelength of accelerated electrons
	experimental verification of wave particle dualism
6 th Week	Wave Packet and Wave function, Group and phase velocity
	of a wave packet and their relation
7 th Week	Heisenberg Uncertainty Principle, Examples of position
	momentum uncertainty, application of uncertainty Principle
8 th Week	Derivation of 1-D time dependent Schrodinger Wave
	Equation and its extension to 3-Dand Effect of external Force
9 th class	Derivation of time independent Schrodinger wave equation,
	Eigen values and Eigen functions, Physical significance of
	Eigen function and its Normalization
10 th Week	Operators and Observables, expectation values of dynamic
	duantities, Probability current density
11 th Week	Hands on Practice of numerical Problems of Unit-1
12" week	Application of Quantum mechanics: A particle in one
	dimensional box, Derivation of Eigen function Eigen values
1 Oth we als	And position of Nodes and Antinodes
13 th week	One dimensional potential step: wave function probability
14th Wook	One dimensional notantial barrier: Derivation for
Tt. Meek	Transmission coofficients and reflection coofficients and
	quantum Mechanical tunneling
15 th Week	One dimensional linear harmonic oscillators: Derivation for
15 Week	energy Figen values Figen function. Zero point energy and
	their graphical representation
16 th Week	Hands on practice of Numerical Problems
17 th Week	Revision of important question of unit-1
18 th Week	Revision of important question of unit-2
19 th Week	Revision of important question of unit-3
20th Mook	Prenaration for House
20 WCCK	

Lesson Plan (Physics-Optics 2nd)

BSc. 4th sem(Even sem.)

Week	Topic Covered
1 st Week	Interference by Division of amplitude, Interference in thin film due to reflected light and transmitted light,
2 nd Week	Intensity Distribution in interference bands due to thin film, Need of Extended source, Production of colours in thin films
3 rd Week	Non Reflecting Glass, application of non reflecting films, reflectivity in terms of wavelength and refractive index
4 th Week	Increasing reflecting powers by thin film deposition, Interference by wedge shape film
5 th Week	Newton ring formation due to reflected light and transmitted light, application of newton rings
6 th Week	Michelson Interferometer and its application
7 th Week	Classification of Diffraction: Fresnel's diffraction and Fraunhoffer's Diffraction, Fresnel's half period zone
8 th Week	Zone Plate-its principle, construction and working, Zone plate as a convex lens, comparison b/n a zone plate and convex lens
9 th class	Diffraction at a straight edge and its application of determination of wavelength, Diffraction at a rectangular slit and circular aperture
10 th Week	Fraunhoffer Diffraction at single slit and intensity variation in diffraction of single slit, Fraunhoffer diffraction at circular slit
11 th Week	Fraunhoffer Diffration at double slit and intensity variation of diffraction pattern due to slit, missing orders in diffraction pattern of double slit
12 th Week	Plane diffraction grating, theory of grating, absent spectra in a diffraction grating, overlapping of different spectral line
13 th week	Dispersive power of diffraction grating, resolving power of a grating and their relation, resolving power of telescpoe
14 th Week	Polarization and its demonstration, representation of light vibrations, analysis of polarized light, Malus law
15 th Week	Method for production of polarized light, Detection of polarized reflected light-Biot's polariscope
16 th Week	Brewster's law, Polarization by transmission through a pile of plates, polarization by Scattering, polarization by selective absorption
17 th Week	Polarization by double Refraction, types of crystals and

	their characteristics
18 th Week	Production of Polarized light by double refraction-
	Huygen's experiment and its physical explanation
19 th Week	Nicol Prism- Principle, constru, working and its
	limitation, use of a nicol prism
20 th Week	Huygen's theory of double refraction, refractive
	indices for uniaxial crystals, determination of
	refractive indices
21 th Week	Elliptically and circularly polarized light theory,
	Polarised and analysis of different types of polarized
	light
22 th Week	
	Optical rotation, Degree of optical rotation, rotatory
	Dispersion, Fresnel's Explanation of optical rotation
23 th Week	Laurent Half Shade Polarimeter and its working,
	Biquartz Polarimeter and its working

Lesson Plan

(Physics-Optics-I)

B.Sc. 3rd sem.(Odd sem.)

Week	Topic Covered
1 st Week	Transverse wave in a string, Speed of transverse wave in string,
	Speed of longitudinal waves in a fluid
2 nd Week	Superposition of waves, Fourier's Theorem , Dirichlet's condition ,
	evaluation of Fourier coefficients
3 rd Week	Cosine series for even function and Sine series for odd function,
	Fourier series for the interval (0, 2π)
4 th Week	Complex for of a Fourier series, application of Fourier series for
	rectangular square wave, Triangular wave
5 th Week	Analysis of output of half wave rectifier and full wave rectifier,
	analysis of saw tooth waves, Fourier series in interval (-L,L)
6 th Week	Numerical Practice on application of Fourier series an Fourier
	integrals, Fourier integral for even and odd function an complex
	form of Fourier integral
7 th Week	Fourier Transforms, Fourier Sine Transforms, Fourier Cosine
attern a	Transforms Properties of Fourier Transforms
8" Week	Application of Fourier Transforms: Fourier Transform of Gaussian
	Function and Single step Function
9 th class	Basic of Matrices and Use of Matrices in Paraxial Optics, sign
	conventions
10 th Week	Coordinates of paraxial ray, Effect of Translation and Translational
	Matrices, Effect of Refraction and Refraction Matrices
11" Week	Position of an image plane and magnification of an optical system,
	system wath is for thick lens and derivation of le's maker formula for thin lens
12 th Week	Concent of Unit Plane and derivation of Lens' Maker formula for a
	thick lens. Nodal plane, and show that anodal plane coincide with
	unit plane
13 th week	Aberrations and their types. Chromatic Aberration in a Lens.
	Achromatic Combination of two thin lens in contact
14 th Week	Achromatic Combination of two coaxial lens held apart, Spherical
	aberration in a lens, Longitudinal aberration in thin Lens and
	method for their reduction
15 th Week	Coma and Method of removal of Coma, Astigmatism and Curvature
	of Field and their Removal
16 th Week	Distortion and removal of distortion and Practices of Numerical
	problems
17 th Week	Interference of waves, Types of interference, Coherent sources,
	condition for sustained interference, Analytical treatment of Young
	double slit interference
18 th Week	Expression for fringe width, Fresnel's Biprism and determination of
	wavelength of Sodium light
19 th Week	Determination of thickness of transparent sheet using Fresnel's
	biprism, Lloyd's mirror Comparison b/n Fresnel's biprism an Lloyd's
	mirror interference pattern s
20 th Week	Stoke's Treatment and Achromatic fringe with white light
21 th Week	Revision of important question of unit-1
22 th Week	Revision of important question of unit-2
23 ^u Week	Revision of important question of unit-3

Lesson Plan

(Physics-Properties of matter, K.T of gases & Theory of Relativity)

BSc. 2nd sem.(Even sem.)

Week	Topic Covered
1 st Week	Introduction, Stress-Strain, Hook's law, Stress –Strain Curve, types of Elasticity, Poisson's Ratio, Energies of Strained body
2 nd Week	Bulk modulus relation(Relation B/n Y,K and σ), Relation b/n Shearing strain and Extension strain and compression strain, Shearing stress, extension stress and compression stress
3 rd Week	Relation b/n elastic constants, Limiting value of Poisson's ratio, Twisting of Cylinder and twisting couple
4 th Week	Bending of beam, Limitation of simple theory of bending , Cantilever loaded at free end, Transverse vibration of loaded cantilever
5 th Week	Depression of centrally loaded beam supported its end, Depression of uniformly loaded beam at its middle point, Stiffness resilience of beam
6 th Week	Assumptions of K.T of gases, expression of pressure of gases, Kinetic interpretation of temp.,
7 th Week	Phase space, Division of phase space, microstate and macrostates, Postulates of statistical mechanics
8 th Week	Deduction of Maxwell- Boltzmann velocity Distribution law, Deduction of Maxwell- Boltzmann speed Distribution law , Discussion of Maxwell- Boltzmann speed Distribution law
9 th class	Most probable speed, average or mean speed and RMS speed and their relation, Maxwell Boltzmann energy –wise Distribution law and experimental verification of Maxwell Distribution law of speed
10 th Week	Degree of Freedom, Law of equipartition of energy, Specific heat of gases, variation of molar specific heat,
11 th Week	Mean free path and its derivation , Probability of a particle to travel a distance without collision, transport phenomenon
12 th Week	Viscosity(Transport of momentum), Thermal Conduction(Transport of energy), Diffusion (Transport of mass)
13 th week	Brownian motion and factor affecting it, Einstein's theory of translational Brownian motion Deviation of real gases behavior from ideal gases

14 th Week	Results of Andrew's Experiment , Vander wall's
	equation of state of real gases, Vander Wall's isotherm
15 th Week	Limitation of Vander Wall's equation, Explanation of
	Vander Wall's Equation
16 th Week	Frame of reference, Inertial frame of reference,
	Galilean Transformation , Galilean invariance and
	Newtonian relativity
17 th Week	Conservation Law according to Galilean
	Transformation, Search of universal frame, Michalson
	and Morley experiment
18 th Week	Special theory of relativity, Lorentz transformation,
	Consequences of Lorentz Transformation; Relativity of
	Space, Relativity of time, Twin Paradox,
19 th Week	Relativity of simultaneity, Composition of Velocities,
	Relativity of mass, Mass energy equivalence,
20 th Week	Relativistic momentum and energy, Experimental
	evidence for spatial theory of relativity
21 th Week	Revision of important question of unit-1
22 th Week	Revision of important question of unit-2
23 th Week	Revision of important question of unit-3

Lesson Plan

(Physics-Electricity and Magnetism)

B.Sc. 1st sem. (odd sem)

Week	Topic Covered
1 st Week	Scalars and vectors, dot and cross product, Triple scalar and
	vector product, Differentiation of a vector
2 nd Week	Gradient of a scalar and its physical significance, integration
	of a vector(line, surface and volume integral and their
	physical significance)
3rd Week	Divergence of a vector field and its physical significance
5 Week	Gauss Divergence theorem Selenoidal field
	Gauss Divergence theorem, solenoidar neid
ath sale - I	Coul of a constant field, when it all simulfing and Could's Court along
4" Week	Curl of a vector field: physical significance, Curl in Cartesian
	coordinates,
5 th Week	Stokes theorem, irrotational or conservative field, Numerical
	problems
6 th Week	Derivation of E from potential as gradient, Derivation of
	Laplace and Poisson Equation, Electric Flux,
7 th Week	Gauss law and its applications to spherical shell, uniformly
	charged infinite plane and uniformly charged straight wire
8 th Week	Mechanical force of charged surface. Energy ner unit volume
Othelass	Magnetic induction Magnetic flux Gauss law in magnete
5° Class	statics. Amore sizevital low and its proof Some basis terms
	statics, Ampere circuitai law and its proof some basic terms
	related to magnetism
10 th Week	Solenoidal nature of magnetic induction, Properties of
	B (i) $\nabla \times B = \mu_0 J$ (ii) $\nabla B = 0$
11 th Week	Modern Electronic theory of diamagnetism and Langevin's
	theory of para magnetism,
12 th Week	Cycle of magnetization, Hysteresis loop(Energy dissipation ,
	Hysteresis loss and importance of Hysteresis)
13 th week	Concept of displacement current. Maxwell's equations in
	integral form and their physical significance. Derivations of
	Maxwell's equations
14th Wook	Scalar and vector notentials E M. waves Wave equation in
14 WEEK	free cross
	2 Diversional constitution in a dialectric Managemention
15 Week	3- Dimensional wave equation in a dielectric, wave equation
	for a plane polarized e.m. wave
16 th Week	Transverse nature of e.m. waves, Characteristics of
	electromagnetic waves
17 th Week	Poynting Vector, Poynting Theorem and equation of
	continuity
18 th Week	Boundary condition s at the interface between different
	media
19 th Week	Numerical Problems of the unit
20 th Week	Revision of important question of unit-1
20 Week	Povicion of important question of unit-1
21 ^m Week	Revision of important question of unit-2
22 th Week	Revision of important question of unit-3