Government College for Women Ateli (Mahendergarh)

Lesson Plan (MECHANICS)

BSc. 1st sem.(odd sem.) wef 22 July 2024

Week	Topic Covered
1 st Week	Fundamentals of Dynamics: Rigid body, Moment of Inertia, Radius of Gyration, Theorems of
	perpendicular and parallel axis (with proof),
2 nd Week	Moment of Inertia of rod, ring, Disc, Angular Disc,
	Solid cylinder, Solid sphere, Hollow sphere,
	Rectangular plate, Square plate, Solid cone,
and and a	Triangular plate,,
3 rd Week	Torque, Rotational Kinetic Energy, Angular
	momentum, Law of conservation of angular
	momentum, Rolling motion, condition for pure
4 th Wook	rolling,
4 Week	Acceleration of body rolling down an inclined
	body & UNIT TEST 1
5 th Week	Introduction, Deforming force, Elastic limit, stress,
	strain and their types, Hooke"s law, Modulus of
	rigidity, Relation between shear angle and angle of
	twist, elastic energy stored/volume in an elastic
	body
6 th Week	Elongation produced in heavy rod due to its own
	weight and elastic potential energy stored in it,
	Tension in rotating rod, Poisson [*] s ratio and its
	limiting value,
7 th Week	Bending of beam, bending moment and its
	magnitude, Flexural rigidity, Geometrical moment
	of inertia for beam of rectangular cross-section
8 th Wook	Bonding of contilover (loaded by a weight W at its
o week	free and) weight of cantilover uniformly
	distributed over its entire length
9 th class	Dispersion of a centrally loaded beam supported
	at its ends, determination of elastic constants for
	material of wire by Searle's method & UNIT TEST -
	2
10 th Week	Michelson"s Morley experiment and its outcomes.
	Postulates of special theory of relativity, Lorentz
	Transformations,
11 th Week	Simultaneity and order of events, Lorentz

	contraction, Time dilation, Relativistic transformation of velocity, relativistic addition of
	velocities,
12 th Week	Variation of mass-energy equivalence, relativistic
	Doppler effect, relativistic kinematics
13 th week	Transformation of energy and momentum,
	transformation of force, Problems of relativistic
	dynamics.
	,
14 th Week	Law of gravitation, Potential and field due to
	spherical shell and solid sphere. Motion of a
	particle under central force field.
15 th Week	Two body problem and its reduction to one body
	problem and its solution, compound pendulum or
	physical pendulum in form of elliptical lamina and
	expression of time period
1 Cth Week	Expression of time period,
10 ^m week	Determination of g by means of bar pendulum,
	Normal coordinates and normal modes, Normal
	modes of vibration for given spring mass system,
17 th Week	Possible angular frequencies of oscillation of two
	identical simple pendulums of length (I) and small
	bob of mass m0 joined together with spring of
	spring constant (k). & UNIT TEST-4
18 th Week	Revision of important question of unit-1
19 th Week	Revision of important question of unit-2
20 th Week	Revision of important question of unit-3
21 th Week	Revision of important question of unit-4

.

.

Government College for Women Ateli (Mahendergarh)

Lesson Plan

(Physics-Optics-I)

B.Sc. 3rd sem.(Odd sem.) w.e.f 22 July 2024

Week	Topic Covered
1 st Week	Transverse wave in a string. Speed of transverse wave in string.
	Speed of longitudinal waves in a fluid
2 nd Week	Superposition of waves, Fourier's Theorem , Dirichlet's condition ,
	evaluation of Fourier coefficients
3 rd Week	Cosine series for even function and Sine series for odd function,
	Fourier series for the interval (0, 2π)
4 th Week	Complex for of a Fourier series, application of Fourier series for
	rectangular square wave, Triangular wave
5 th Week	Analysis of output of half wave rectifier and full wave rectifier,
	analysis of saw tooth waves, Fourier series in interval (-L,L)
6 th Week	Numerical Practice on application of Fourier series an Fourier
	integrals, Fourier integral for even and odd function an complex
	form of Fourier integral
7 th Week	Fourier Transforms, Fourier Sine Transforms, Fourier Cosine
	Transforms Properties of Fourier Transforms
8 th Week	Application of Fourier Transforms: Fourier Transform of Gaussian
	Function and Single step Function
9 th class	Basic of Matrices and Use of Matrices in Paraxial Optics, sign
a oth we all	conventions
10 ⁴⁴ Week	Coordinates of paraxial ray, Effect of Translation and Translational
11th Wook	Decition of an image plane and magnification of an ontical system
11 th Week	Position of an image plane and magnification of an optical system,
	thin lens
12 th Week	Concent of Unit Plane and derivation of Lens' Maker formula for a
	thick lens. Nodal plane and show that anodal plane coincide with
	unit plane
13 th week	Aberrations and their types, Chromatic Aberration in a Lens,
	Achromatic Combination of two thin lens in contact
14 th Week	Achromatic Combination of two coaxial lens held apart, Spherical
	aberration in a lens, Longitudinal aberration in thin Lens and
	method for their reduction
15 th Week	Coma and Method of removal of Coma, Astigmatism and Curvature
	of Field and their Removal
16 th Week	Distortion and removal of distortion and Practices of Numerical
	problems
17 th Week	Interference of waves, Types of interference, Coherent sources,
	condition for sustained interference, Analytical treatment of Young
	double slit interference
18 th Week	Expression for fringe width, Fresnel's Biprism and determination of
anth terrai	wavelength of Sodium light
19"' Week	Determination of thickness of transparent sheet using Fresnel's
	migror interference nattern s
20th Wook	Stoke's Treatment and Achromatic frings with white light
20 WEEK	Revision of important question of unit 1
21 WEEK	Revision of important question of unit-1
22 WCCN 23th Waak	Revision of important question of unit-2
25 WCCN	

Government College for Women Ateli (Mahendergarh)

Lesson Plan

(Physics-Quantum Mechanics)

B.Sc. 5th sem. (Odd Sem.) wef 22 July 2024

Week	Topic Covered
1 st Week	Failure of classical E.M. Theory, Planck's Quantum Theory of
	Radiation, Characteristics of Photons
2 nd Week	Photoelectric Effect and failure of classical E.M. Theory to
	explain to Explain Photo Electric Effect, Einstein's Equation
	of Photoelectric Effect
3 rd Week	Compton Effect & theory of Compton Scattering,
	Experimental Study of Compton Effect, Relation B/n angle of
	scattering Photon and Recoiling electron
4 th Week	Energy of recoiling electron, K.E of recoiling electron in term
	of angle of scattering, Energy of scattered photon, Compton
	effect with visible and UV light, Limitation of old Quantum
mak yazı il	Theory
5 th Week	De-Broglie Hypothesis and matter wave, alternative method,
	de –Broglie wavelength of accelerated electrons
Cth Mook	Wave Packet and Wave function - Group and phase velocity
0 ^m Week	of a wave packet and their relation
7th Wook	Hoisonborg Uncertainty Principle, Examples of position
7 th Week	momentum uncertainty application of uncertainty Principle
9th Week	Derivation of 1 D time dependent Schrodinger Waye
o week	Equation and its extension to 3-Dand Effect of external Force
9 th class	Derivation of time independent Schrodinger wave equation.
	Eigen values and Eigen functions. Physical significance of
	Eigen function and its Normalization
10 th Week	Operators and Observables, expectation values of dynamic
	quantities, Probability current density
11 th Week	Hands on Practice of numerical Problems of unit-1
12 th Week	Application of Quantum mechanics: A particle in one
	dimensional box, Derivation of Eigen function Eigen values
	and position of Nodes and Antinodes
13 th week	One dimensional potential step: wave function Probability
	current density for transmitted and reflected waves
14 th Week	One dimensional potential barrier: Derivation for
	Transmission coefficients and reflection coefficients and
	quantum Mechanical tunneling
15 th Week	One dimensional linear harmonic oscillators: Derivation for
	energy Eigen values, Eigen function, Zero point energy and
a eth sur l	their graphical representation
16 th Week	Hands on practice of Numerical Problems
1/" Week	Revision of Important question of unit-1
18 th Week	Revision of Important question of unit-2
19 th Week	Revision of Important question of unit-3
ZU" Week	Preparation for House